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1 Thermodynamic Limits for Counting Empirical Measures

1.1 Recap + rest of proof of the thermodynamic limit

In our lattice models, we have an alphabet |A| < ∞ of local states. If W ⊆ Zd is finite,
then an observable is a function ψ : AW → Rr. For a box B and ω ∈ AB,

ΨB(ω) =
∑

v+W⊆B
ψ(ωv+W ).

We wanted to measure the size of

ΩB(ψ,U) = {ω ∈ AB : 1
|B|ΨB(ω) ∈ U}.

We were trying to prove the existence of the thermodynamic limit in this situation:

Theorem 1.1. There exists a concave, upper semicontinuous function s : Rr → [−∞,∞)
such that

(a) maxx s(x) = log |A|.

(b) If either U ∩ {s > −∞} 6= ∅ or U ∩ {s > −∞} = ∅, then

|ΩB(ψ,U)| = exp

(
|B| · sup

x∈U
s(x) + o(|B|)

)
.

Last time, we showed that there is a function boxes→ (0,∞) sending B 7→ ε(B) such
that ε(B)→ 0 as B ↑ Zd and

|ΩB(ψ,U2ε(B))| = exp(|B| · s(U) + o(|B|))

for some s(U) ∈ [−∞,∞), where U2ε(B) := {x : B2ε(B)(x) ⊆ U}. We can define

s(x) = inf{s(U) : U 3 x is open, convex}.
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This s is automatically upper semicontinuous.
Last time, we showed the estimate that if R is big enough, then

|ΩR(ψ,U2ε(R))| ≥
m∏
i=1

|ΩB(ψ, (Ui)2ε(B))|.

Here is the rest of the proof of the theorem:

Proof. If 1/2 + O(1/m) of the Uis are U and 1/2 + O(1/m) of them are U ′, then this
inequality gives

|ΩR(ψ, (12U + 1
2U
′)2ε(R)+O(1/n))| ≥ |ΩB(ψ,U2ε(B))|m/2+o(1) · |ΩB(ψ,U ′2ε(B))|

m/2+o(1).

Let R ↑ Zd and then B ↑ Zd, so we get

s

(
1

2
U +

1

2
U ′
)
≥ 1

2
(s(U) + s(U ′)).

Next we show that s(U) = supx∈U s(x). As before, this follows if s(U) = sup{s(K) :
K ⊆ U compact, convex}. This works the same as in the non-interacting case because

lim
B↑Zd

1

|B|
log |ΩB(ψ,U2ε(B))| = sup

B

1

|B|
log |ΩB(ψ,U2ε(B))|.
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So if c is < this, then there is a box B such that 1
|B| log |ΩB(ψ,U2ε(B))| ≥ c. There exists a

compact set K such that ΩB(ψ,U2ε(B)) = ΩB(ψ,K). Take 1
|B| log | · |, let B ↑ Zd and use

superadditivity to get s(K) ≥ c.
So s(U) = sup s(K), and so s(U) = supx∈U s(x). Now we have a concave upper

semicontinuous function such that

|ΩB(ψ,U2ε(B))| = exp

(
|B| · sup

x∈U
s(x) + o(|B|)

)
.

for all open convex U . If we remove the ε, certainly

|ΩB(ψ,U)| ≥ exp

(
|B| · sup

x∈U
s(x) + o(|B|)

)
.

But if U ∩ {s > −∞} 6= ∅ or U ∩ {s > −∞} = ∅, then for every ε > 0, there is a δ > 0
such that

sup
x∈Bδ(U)

s(x) < sup
x∈U

s(x) + ε, where Bδ(U) =
⋃
y∈U

Bδ(y).

But then U ⊆ (Bδ(U))2ε(B) for all large enough boxes B, and we have

|ΩB(ψ,U)| ≤ |ΩB(ψ, (BδV )2ε(B)|

= exp

(
|B| · sup

x∈Bδ(U)
s(x) + o(|B|)

)

≤ exp

(
|B| · (sup

x∈U
s(x) + ε) + o(|B|)

)
.

Therefore,

lim sup
B↑Zd

1

|B|
log |ΩB(ψ,U)| ≤ sup

x∈U
s(x) + ε.

Here, ε is arbitrary, so in fact limB↑Zd = supU s(x).
Here is the last detail: Take U = Rr to get

|A||B| = |ΩB(ψ,U)| = e|B|·supx s(x)+o(|B|).

This gives
sup
Rr

s = log |A|.

1.2 The exponent function for measure-valued observables

In the non-interacting case, we described s:

(a) in general via s∗,
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(b) explicitly in case ψ is measure-valued.

We will aim to do the same in this setting.
Let’s try to approach (b). To set this up, fix again a finite window W ⊆ Zd and define

ψ : AW →M(AW ) = RAW sending a 7→ δa. Then we have

ΨB(ω)({a}) =
∑

v+W⊆B
ψ(ωv+W )({a}) = |{v : v +W ⊆ B,ωv+W = a}|.

We now look at 1
|B|ΨB(ω), but it would be cleaner to look at 1

|{v:v+W⊆B}|
∑

v+W⊆B ψ(ωv+W )
so this can be an average. Fortunately, these are asymptotically equivalent, as

|{v : v +W ⊆ B}| = |B|+ o(|B|),

so both averages behave the same asymptotically.

Definition 1.1.

PWω =
1

|{v : v +W ⊆ B}|
∑

v+W⊆B
δωv+W ∈ P (AW )

is called the W -empirical measure of ω ∈ AB.

What are the possible limits of empirical measures, and what is the exponent function
s for those? We will answer this as W ↑ Zd (after everything else). Here is the first
observation: Suppose W ⊆ W ′ and π : AW

′ → AW is the projection. Consider ω ∈ AB
and

π∗P
W ′
ω =

1

|{v : v +W ⊆ B}|
∑

v+W ′⊆B
π∗δωv+W ′

=
1

|{v : v +W ⊆ B}|
∑

v+W ′⊆B
δωv+W

= PWω +O

(
|W ′|

min side length(B)

)
,

where the big O term is a bound on the total variation ‖π∗PW
′

ω − PWω ‖.
This is an “approximate compatibility” of empirical measures. This means that we can

look at µ ∈ P (AZd) and a weak*-neighborhood of the form U = {ν : ‖(πW )∗ν− (πW )∗µ‖ <
ε} for some ε > 0 and finite W ⊆ Zd. Then consider

s(U) = lim
B↑Zd

1

|B|
log |{ω ∈ AB : ‖PWω − (πW )∗µ‖ < ε}|.

This lets us define s(U) for any weak* open set U of this form for some W . These are a base

for the weak* topology on P (AZd). This will let us find a concave, upper semicontinuous

exponent function s : P (AZd)→ [−∞,∞).
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